YES 2.785 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\(m,_)→m

is transformed to
m0 (m,_) = m

The following Lambda expression
\(_,r)→r

is transformed to
r0 (_,r) = r

The following Lambda expression
\(q,_)→q

is transformed to
q1 (q,_) = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IFR

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
HASKELL
          ↳ BR

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
frac@(Double vy vz)

is replaced by the following term
Double vy vz

The bind variable of the following binding Pattern
frac@(Float ww wx)

is replaced by the following term
Float ww wx



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ LetRed

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
m
where 
m  = m0 vu6
m0 (m,vv) = m
vu6  = properFraction x

are unpacked to the following functions on top level
truncateM xw = truncateM0 xw (truncateVu6 xw)

truncateM0 xw (m,vv) = m

truncateVu6 xw = properFraction xw

The bindings of the following Let/Where expression
(fromIntegral q,r :% y)
where 
q  = q1 vu30
q1 (q,wz) = q
r  = r0 vu30
r0 (xu,r) = r
vu30  = quotRem x y

are unpacked to the following functions on top level
properFractionVu30 xx xy = quotRem xx xy

properFractionR xx xy = properFractionR0 xx xy (properFractionVu30 xx xy)

properFractionQ1 xx xy (q,wz) = q

properFractionR0 xx xy (xu,r) = r

properFractionQ xx xy = properFractionQ1 xx xy (properFractionVu30 xx xy)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
HASKELL
                      ↳ NumRed

mainModule Main
  ((succ :: Float  ->  Float) :: Float  ->  Float)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
HASKELL
                          ↳ Narrow

mainModule Main
  (succ :: Float  ->  Float)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
QDP
                                ↳ DependencyGraphProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz134, xz135, Zero, Zero) → new_primDivNatS00(xz134, xz135)
new_primDivNatS0(xz134, xz135, Succ(xz1360), Succ(xz1370)) → new_primDivNatS0(xz134, xz135, xz1360, xz1370)
new_primDivNatS(Succ(xz1150), Succ(xz1160), xz117) → new_primDivNatS(xz1150, xz1160, xz117)
new_primDivNatS(Succ(Succ(xz11500)), Zero, Succ(xz1170)) → new_primDivNatS0(xz11500, xz1170, xz11500, xz1170)
new_primDivNatS(Succ(Zero), Zero, Zero) → new_primDivNatS(Zero, Zero, Zero)
new_primDivNatS(Succ(Succ(xz11500)), Zero, Zero) → new_primDivNatS(Succ(xz11500), Zero, Zero)
new_primDivNatS00(xz134, xz135) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))
new_primDivNatS0(xz134, xz135, Succ(xz1360), Zero) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ QDPSizeChangeProof
                                    ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(xz11500)), Zero, Zero) → new_primDivNatS(Succ(xz11500), Zero, Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ QDPOrderProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz134, xz135, Zero, Zero) → new_primDivNatS00(xz134, xz135)
new_primDivNatS0(xz134, xz135, Succ(xz1360), Succ(xz1370)) → new_primDivNatS0(xz134, xz135, xz1360, xz1370)
new_primDivNatS(Succ(xz1150), Succ(xz1160), xz117) → new_primDivNatS(xz1150, xz1160, xz117)
new_primDivNatS(Succ(Succ(xz11500)), Zero, Succ(xz1170)) → new_primDivNatS0(xz11500, xz1170, xz11500, xz1170)
new_primDivNatS00(xz134, xz135) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))
new_primDivNatS0(xz134, xz135, Succ(xz1360), Zero) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS(Succ(xz1150), Succ(xz1160), xz117) → new_primDivNatS(xz1150, xz1160, xz117)
new_primDivNatS(Succ(Succ(xz11500)), Zero, Succ(xz1170)) → new_primDivNatS0(xz11500, xz1170, xz11500, xz1170)
The remaining pairs can at least be oriented weakly.

new_primDivNatS0(xz134, xz135, Zero, Zero) → new_primDivNatS00(xz134, xz135)
new_primDivNatS0(xz134, xz135, Succ(xz1360), Succ(xz1370)) → new_primDivNatS0(xz134, xz135, xz1360, xz1370)
new_primDivNatS00(xz134, xz135) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))
new_primDivNatS0(xz134, xz135, Succ(xz1360), Zero) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2, x3)) = x1   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primDivNatS00(x1, x2)) = 1 + x1   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ QDPOrderProof
QDP
                                          ↳ DependencyGraphProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz134, xz135, Zero, Zero) → new_primDivNatS00(xz134, xz135)
new_primDivNatS0(xz134, xz135, Succ(xz1360), Succ(xz1370)) → new_primDivNatS0(xz134, xz135, xz1360, xz1370)
new_primDivNatS00(xz134, xz135) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))
new_primDivNatS0(xz134, xz135, Succ(xz1360), Zero) → new_primDivNatS(Succ(xz134), Succ(xz135), Succ(xz135))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ QDPOrderProof
                                        ↳ QDP
                                          ↳ DependencyGraphProof
QDP
                                              ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(xz134, xz135, Succ(xz1360), Succ(xz1370)) → new_primDivNatS0(xz134, xz135, xz1360, xz1370)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(xz94, xz95, Succ(xz960), Succ(xz970)) → new_primMinusNat(xz94, xz95, xz960, xz970)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat0(Succ(xz570), Succ(xz580), xz59) → new_primMinusNat0(xz570, xz580, xz59)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat1(xz45, xz46, Succ(xz470), Succ(xz480)) → new_primMinusNat1(xz45, xz46, xz470, xz480)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(xz107, xz108, Succ(xz1090), Succ(xz1100)) → new_primPlusNat(xz107, xz108, xz1090, xz1100)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat0(Succ(xz610), Succ(xz620), xz63) → new_primPlusNat0(xz610, xz620, xz63)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IFR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ LetRed
                    ↳ HASKELL
                      ↳ NumRed
                        ↳ HASKELL
                          ↳ Narrow
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat1(xz50, xz51, Succ(xz520), Succ(xz530)) → new_primPlusNat1(xz50, xz51, xz520, xz530)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: